If it's not what You are looking for type in the equation solver your own equation and let us solve it.
60x^2+30x=0
a = 60; b = 30; c = 0;
Δ = b2-4ac
Δ = 302-4·60·0
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-30}{2*60}=\frac{-60}{120} =-1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+30}{2*60}=\frac{0}{120} =0 $
| 7k-32=+7 | | 7x-9/2+3x-2/5=-9 | | 10x+8=12+8x | | 10(-7+5v)=-14-6v | | 3.9/2.6=6.2/y= | | 8x/2+20=36 | | x-36=-17 | | 7484/w=36 | | 11y=21 | | -6y+24=0 | | 11/21=y/7 | | 10d+36=–24 | | 7+3*x=35 | | 8x+10=134-2x | | 15=50-5*x | | 5n²-67n+216=0 | | 5×-2=3x-4 | | -6k-3(k-7)=21-9k | | 100x^2+80x=0 | | 40/5=4x | | X-y=4.X-3y=0 | | 2(x+3)-(2x-7)=12) | | 4-(-2+3x)=-2+(-x-1) | | X-y=4X-3y=0 | | 14y-2y+4y=150+110-3y | | 9x+8=10x+6 | | -3n-13=9n-1 | | 8x+56=20x-4 | | (x+75)=(x+125) | | 98x=x+x | | –5x+10=–25 | | 3a+5-(5a-11)=2 |